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Abstract: Numerical reservoir simulation studies can be used to plan water injection projects to delay time and maximize oil 

recovery at water breakthrough which is time-consuming and computationally expensive. Combining computationally 

inexpensive proxy models and optimization algorithms is a solution to this problem. In this study, the Box-Behnken design 

method and response surface methodology were used to develop two proxy models which showed the relationship between 

time and recovery factor at water breakthrough with six independent variables namely porosity, horizontal permeability, water 

viscosity, bottom-hole pressure, water injection rate and vertical permeability. A comparison of actual and predicted values for 

time and oil recovery factor at water breakthrough was found to be in good agreement with each other. An average absolute 

percentage error of 2.038% and 1.217%, a root mean square error of 0.08 and 0.0000988, and coefficients of determination, R
2
 

of 0.9984 and 0.9946 were obtained for time and recovery factor at water breakthrough respectively. These are indications that 

the developed models are accurate, valid, and reliable. The models were further validated by comparing the actual and 

predicted water breakthrough time and recovery factor at water breakthrough using input variables that were not used in model 

development. These were also in close agreement with each other. The MATLAB multi-objective genetic algorithm was used 

to determine at a specific average porosity and permeability value, the best optimum controllable variables that maximized the 

objective functions. These were found to be 10.8978 years and 0.786 respectively and agreed with simulation results obtained 

using similar input parameter values. 

Keywords: Reservoir Simulation, Proxy Model, Design of Experiments, Breakthrough Time, Recovery Factor, 

Optimization 

 

1. Introduction 

1.1. Background of the Study 

A typical petroleum reservoir usually undergoes primary, 

secondary, and enhanced oil recovery processes during its 

lifetime [1]. Ahmed & Meehan reported that Primary, 

Secondary, and Tertiary recovery processes will result 

respectively to a 25%, 30%, and 45% of Original Oil in Place 

for light oils, and 5%, 5%, and 90% of original oil in place 

for heavy oils respectively [2]. Primary oil recovery methods 

consist of various reservoir drive mechanisms such as gas 

cap expansion, solution gas drive, rock expansion, water 

drive, and gravity drainage and are defined as a distinct form 

of energy within a reservoir that causes expulsion or 

production of reservoir fluids to the surface [3]. These 

methods result in the initial production stage of a reservoir. 

Secondary oil recovery methods are usually implemented to 

drive more oil from the reservoir towards the production 

wells when primary oil recovery processes are no longer 

feasible. These processes are used to increase hydrocarbon 

recovery beyond primary recovery [4]. Secondary oil 
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recovery involves injecting water or gas to provide pressure 

maintenance and sweep crude oil towards the production 

wells. An immiscible gas injection process is not as effective 

as a waterflooding process, causing secondary oil recovery to 

be used almost synonymously for waterflooding [5]. 

Enhanced Oil Recovery (EOR) processes can be classified as 

Miscible Gas Injection, Chemical Processes, and Thermal 

Processes. Fluids injected into a reservoir for EOR purposes 

supplement the natural energy of the reservoir to displace oil 

to the production wells, interact with the rock-oil system to 

create favorable conditions for oil recovery by lowering 

interfacial tension, oil swelling, reduction in oil viscosity, and 

wettability modifications [5]. 

An equation for predicting water breakthrough time and 

critical rate for an Iranian oil field was developed by Karami 

et al. [6]. The water coning correlation developed by the 

authors can be used to predict the critical rate and water 

breakthrough time which was found to be useful in 

determining the optimum rate to delay water breakthrough 

time and hence know when water coning reaches the 

production well. A novel model for predicting water 

breakthrough time in a high sulfur gas reservoir with edge 

water was developed by Guo et al. [7]. The model was 

developed based on the flow law and sulfur precipitation 

model in porous media. In this model, water breakthrough 

time was dependent on irreducible water saturation, residual 

gas saturation, and the distance between the gas wells and the 

edge water, sulfur saturation, and non-Darcy flow. This 

model and existing models were in good agreement showing 

the validity and accuracy of the proposed model. Ignoring the 

effect of condensate oil during water breakthrough time 

calculations can cause a difference between actual and 

predicted results. This issue was addressed by Huang et al. [8] 

when they developed a new model for predicting water 

breakthrough time for gas condensate reservoir under edge 

water drive. Their model considered a variation of 

condensate saturation with time and the distance from the 

bottom of the well, which is in line with the actual situation 

of change in condensate saturation in the formation. The 

authors concluded that the main factors affecting water 

breakthrough time in gas condensate reservoirs are daily gas 

production, gas viscosity, porosity, permeability, gas-water 

mobility ratio, gas layer thickness, and the distance between 

the initial gas-water boundary and the bottom of the well. 

Water injection is normally conducted as a secondary 

recovery method after primary oil recovery processes have 

been implemented [9]. This is because of the low cost of 

water, and water properties which enhance the sweep of oil 

towards the production well [10]. During water injection in 

petroleum reservoirs, there is a tendency for the injected 

water to breakthrough at the production wells after a period 

of water injection, which results in high water cuts which 

continues until it becomes uneconomical to run the field [11]. 

This is referred to as water breakthrough time and it is a 

function of well locations, controls placed on wells, and 

reservoir heterogeneity. The factors which affect 

waterflooding were reported by Latuan et al. [12] to include 

reservoir geometry, reservoir fluid characteristics, reservoir 

depth, reservoir heterogeneity and continuity, fluid 

saturations, lithology, and fluid characteristics, and reservoir 

drive mechanism. The authors also highlighted that reservoir 

heterogeneity, high permeability zone, poor cement bonding, 

and unfavorable mobility ratios to be the causes of early 

water breakthrough during water injection. 

It is desirable to delay the time and maximize recovery at 

water breakthrough during water injection because it 

mitigates low oil productivity, minimizes corrosion of surface 

and downhole equipment, and solves water disposal 

challenges [13]. 

A methodology was presented by Meshioye et al. [11] in 

which smart injector well technology was used to control 

waterflooding aimed at maximizing net present value. Inflow 

control valves were installed on the smart injector wells 

which could open or close automatically to meet certain 

production requirements. Reservoir simulation techniques 

were used in a case study to optimize waterflooding by 

Ogbeiwi et al. [14]. The authors used a simple optimization 

methodology in which the effects of zones of production and 

injection, waterflood pattern, and number/type of producers 

and injectors on cumulative oil recovery were analyzed. 

Results from their study showed that water injection in more 

zones resulted in effective pressure maintenance, higher 

water production was observed from the use of vertical 

injectors, and higher cumulative production was achieved 

with horizontal injectors if water is injected in the zone from 

where oil is produced. 

1.2. Problem Statement 

Simulating water injection in a given reservoir before 

implementation has been an approach used by numerous 

researchers to determine the optimum parameters that can delay 

the time and maximize recovery factor at water breakthrough. 

Variables such as water injection rate, the viscosity of injected 

water, and well bottom-hole pressure for production wells are 

control parameters that need to be considered when simulating 

water injection processes in petroleum reservoirs. Conducting 

numerous reservoir simulation studies can be used to determine 

the set of parameters that will delay water breakthrough time 

and maximize oil recovery at breakthrough. However, 

determining an optimum set of parameters that will meet these 

objectives is a challenge as an infinite number of reservoir 

simulation runs need to be conducted to arrive at an optimum 

solution. This approach is computationally expensive and time-

consuming because it involves entering specific parameters into 

the reservoir simulation model and running simulations to 

determine an output. This process is continued till a maximum 

output is generated by a set of parameters considered optimal. A 

solution to this problem is to develop reservoir simulation proxy 

models using statistical or data-driven methods which have 

proven to consume less time and are computationally 

inexpensive, and the parameters which can maximize or 

minimize an objective function as desired can be determined 

with minimal computational effort using optimization 

algorithms. 
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2. Literature Review 

Da Silva et al. highlighted the advantage of using proxy 

models in reservoir simulation studies especially when it is 

impossible to directly evaluate a system or when the process 

is computationally expensive [15]. Proxy models can be 

polynomial regression models, ordinary kriging models, 

artificial neural network models, response surface 

methodology, and the design of experiments [15]. 

Yasutra et al. developed a proxy model for predicting 

waterflood performance in deltaic channeling sands with a 

normal five-spot well pattern [16]. The authors observed 

from their study that the developed proxy model was able, 

faster, reliable, and easy to use in predicting the 

waterflooding performance for these types of reservoirs. 

Olanipekun et al. used a design of experiments and 

response surface methodology approach in developing 

proxy models to aid the screening of candidate reservoirs 

for waterflooding and gas flooding [17]. The developed 

models were used to predict oil recovery factors under 

waterflood and gas flood conditions respectively and the 

model which results in a higher recovery would indicate the 

preferred injection method. Results from their study showed 

that the developed proxy models were robust and could be 

used as an initial screening study for water and gas flood 

candidates. 

Research has also shown that the results from a proxy 

model does not necessarily give a 100% match with results 

from the numerical simulation model but a minimal range 

of error between the results can be obtained [18]. Proxy 

models can serve as an alternative to the reservoir 

simulation models and can aid in overcoming the 

challenges observed by running numerous reservoir 

simulations to arrive at an optimum solution [19]. The 

authors reported applications of proxy modeling in various 

aspects of petroleum engineering such as sensitivity 

analysis, assisted history matching, field development 

planning, risk analysis, optimization, and reservoir 

characterization. Group Method Data Handling (GDMH) 

type Neural Network was used by Daghbandan & Chalik in 

developing a proxy model for predicting Field Oil 

Production Rate (FOPR) in a reservoir during immiscible 

gas injection [20]. A higher degree of accuracy was 

observed when predicted performance was compared with 

the simulated performance of the reservoir. A proxy-based 

optimization approach was used by Al-Mudhafar & Rao to 

optimize future oil recovery during the Gas-Assisted 

Gravity Drainage process after conducting an acceptable 

history matching [21]. 

Most researchers have focused on modeling water 

breakthrough time during the primary phase of oil 

production, and especially for reservoirs with a bottom or 

edge water drive. Others have aimed at optimizing 

waterflood performance to maximize cumulative recovery. 

This study focuses on modeling the time and recovery 

factor at breakthrough during water injection in oil 

reservoirs using statistical proxies. Box-Behnken design of 

experiment method and response surface methodology was 

used to develop proxy models for predicting the time and 

recovery factor at breakthrough during water injection in oil 

reservoirs. The proxy models showed the relationship 

between the time and recovery factor at water breakthrough 

with porosity, vertical permeability, horizontal permeability, 

viscosity and rate of injected water, and bottom-hole 

pressure of the production well. With a suitable 

optimization algorithm (genetic algorithm), the search for 

an optimum set of parameters (water injection rate, 

viscosity of injected water, and bottom-hole pressure of 

production well) that will delay water breakthrough time 

and maximize oil recovery factor at breakthrough for a 

given reservoir of known average porosity and average 

permeability can be determined. 

3. Materials and Method 

3.1. Materials 

The materials or tools used in this study are Eclipse100 

reservoir simulation software, Design Expert 12 software, 

and Genetic Algorithm in MATLAB. 

a. Eclipse100 reservoir was used to build the reservoir model 

and run the simulations to determine the time and recovery 

factor at water breakthrough for each simulation run. 

b. Design Expert 12 software consists of the Box-Behnken 

design method which was used to generate parameter 

realizations which are the various input datasets for 

conducting simulation runs with Eclipse 100 reservoir 

simulator to arrive at desired responses. The corresponding 

results were used for analysis and equally a regression 

model was built using Design-Expert software. 

c. Genetic Algorithm in MATLAB was used in optimizing 

the developed proxy model and aimed at determining 

the optimum set of parameters that will delay water 

breakthrough time and maximize oil recovery factor at 

breakthrough. 

3.2. Method 

3.2.1. Reservoir Description 

The reservoir model used in this study is a single-phase 

model with grid dimensions of 10*10*3 in the x, y, and z 

directions respectively. The model is represented by 300 cells 

and each cell has a length of 150ft in the x and y direction 

and 50ft in the z-direction. The reservoir has a total length 

and width of 1500ft and a thickness of 150ft. Table 1 shows 

the reservoir dimensions, rock and fluid properties, and 

reservoir initialization data. Figure 1 shows an illustration of 

the developed static reservoir model used in this study. 

The porosity and permeability of the reservoir model were 

used as input variables together with water injection rate, 

bottom-hole flowing pressure of the injection well, and 

viscosity of the injected water in the development of the 

proxy model. The injection and production wells were placed 

on grid (1, 1) and grid (10, 10) respectively and both wells 

were perforated on all three layers. 
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Table 1. Properties of Reservoir model. 

Reservoir Property Value 

Number of grids 300 (10 x 10 x 3) 

Reservoir thickness, (ft) 150 
Reservoir length, (ft) x Reservoir Width, (ft) 1500 x 1500 

Residual oil saturation 0.176 

Initial oil saturation O.843 
Initial water saturation 0.157 

Oil viscosity, µ (cp) 1.2 

Initial oil formation volume factor, βo (RB/STB) 1.2356 
Oil density, ρo (Ib/ft3) 49.1 

Water density, ρw (Ib/ft3) 64.79 
Gas density, ρg (Ib/ft3) 0.06054 

Oil gravity, °��� 54.7 

Water formation volume factor, βw (RB/STB) 1.03382 

Bubble point pressure, Pb (psi) 3337 

Rock compressibility, (psi-1) 2 * 10-5 
Rock pressure (psi) 329 

Initial reservoir pressure at datum depth (psi) 4000 

 

Figure 1. Static Reservoir Model. 

3.2.2. Generating Input Data with Box-Behnken Design 

Method for Conducting Reservoir Simulation Runs 

Box-Behnken design is a design method for fitting quadratic 

models requiring 3 levels of each factor. In this design, the 

treatment combinations are the midpoints of edges of the 

process space and at the center. These designs have fewer 

treatment combinations. The advantage of the Box-Behnken 

design method is that it requires fewer experimental runs, is 

most effective, is used to optimize the main, interaction, and 

quadratic effects, and requires a minimum of 3 factors and 3 

levels. The number of experiments that can be generated from 

the Box-Behnken design method is given by equation 1 

� � 2� 	 
� � 1
 �  ��                         (1) 

Where N is the number of simulations, k is the number of 

factors, and �� is the number of center points. 

Response surface methodology is a useful tool for finding 

the relationship between a response and uncertain variables. 

This method combines mathematics and statistics in 

developing a simple empirical model of the system which 

can be easily optimized with an optimization algorithm. 

The form of the relationship between the response and the 

independent variables might not be known at the initial stage 

but a suitable relationship can be found by starting with a 

linear or second-order polynomial of the independent variables. 

Equation 2 shows the typical response and independent 

variable relationship for a second-order polynomial function. 

� � ��  �  ∑ ����  �  ∑ ������  �  ∑ ∑ ������      (2) 

The coefficients ��, ��, �� … . . ��, ���  are referred to as 

regression coefficients of the response surface model and 

can be determined with regression techniques such as least 

square techniques. A model with several regression 

coefficients might not be as accurate as that with fewer 

coefficients and that with fewer coefficients can be 

improved by adding other coefficients to the model. As 

stated earlier, it is important to determine the most 

influential factors of a regression model. 

A homogeneous three-dimensional reservoir model was 

developed using the data presented in Table 1 and Eclipse 

100 Reservoir Simulator. Six independent variables namely 

porosity (X1), horizontal permeability (X2), water viscosity 

(X3), bottom-hole pressure (X4), water injection rate (X5), 

and vertical permeability (X6) were used in the development 

of the proxy model. The independent variables were fixed 

within specific ranges (minimum and maximum values) 

shown in Table 2 for generating sets of data for conducting 

simulation runs. 

Table 2. Range of Variables for Generating Simulation Runs. 

Name Symbol Units Minimum Maximum 

Porosity X1 Fraction 0.2000 0.6000 

Horizontal Permeability X2 Md 200.00 3230.00 

Viscosity of Injected Water X3 Cp 1.0000 10.00 

Bottom hole pressure (BHP) X4 Psi 3400.00 3700.00 

Injection rate X5 stb/day 2000.00 10000.00 

Vertical Permeability X6 Md 75.00 2435.00 

3.2.3. Model Development 

Using the data ranges specified in Table 2 and the Box-

Behnken design method, datasets for conducting reservoir 

simulations were generated. Box-Behnken designs are used 

to generate higher-order response surfaces using fewer runs 

than a normal factorial technique. For six variables, 48 sets of 

data were generated using design expert 12 as shown in Table 

3 for conducting simulation runs. 

Table 3. Simulation Runs for sets of input Variables. 

Run 
Porosity (X1), 

fraction 

Horizontal 

Permeability (X2), md 

water viscosity 

(X3), cp 

Bottom hole 

pressure, (X4), psi 

Water Injection rate 

(X5), stb/day 

Vertical Permeability 

(X6), md 

1 0.4 3230 5.5 3550 2000 2435 

2 0.6 1715 1 3550 6000 75 

3 0.4 1715 10 3700 6000 2435 

4 0.4 200 5.5 3550 2000 75 

5 0.6 1715 1 3550 6000 2435 

6 0.4 1715 10 3400 6000 75 

7 0.6 1715 5.5 3700 2000 1255 
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Run 
Porosity (X1), 

fraction 

Horizontal 

Permeability (X2), md 

water viscosity 

(X3), cp 

Bottom hole 

pressure, (X4), psi 

Water Injection rate 

(X5), stb/day 

Vertical Permeability 

(X6), md 

8 0.2 200 5.5 3700 6000 1255 

9 0.2 1715 10 3550 6000 2435 

10 0.2 3230 5.5 3400 6000 1255 

11 0.2 1715 1 3550 6000 75 

12 0.4 1715 10 3700 6000 75 

13 0.2 1715 5.5 3700 2000 1255 

14 0.4 3230 1 3550 2000 1255 

15 0.6 1715 5.5 3700 10000 1255 

16 0.2 1715 1 3550 6000 2435 

17 0.4 200 10 3550 10000 1255 

18 0.4 200 10 3550 2000 1255 

19 0.2 1715 10 3550 6000 75 

20 0.6 1715 5.5 3400 10000 1255 

21 0.4 1715 1 3700 6000 2435 

22 0.4 200 5.5 3550 2000 2435 

23 0.4 3230 5.5 3550 10000 75 

24 0.2 1715 5.5 3400 10000 1255 

25 0.4 1715 1 3400 6000 2435 

26 0.2 1715 5.5 3400 2000 1255 

27 0.4 200 5.5 3550 10000 2435 

28 0.6 1715 5.5 3400 2000 1255 

29 0.6 3230 5.5 3400 6000 1255 

30 0.4 3230 10 3550 2000 1255 

31 0.2 3230 5.5 3700 6000 1255 

32 0.4 1715 1 3400 6000 75 

33 0.4 200 1 3550 10000 1255 

34 0.2 1715 5.5 3700 10000 1255 

35 0.4 200 5.5 3550 10000 75 

36 0.2 200 5.5 3400 6000 1255 

37 0.6 3230 5.5 3700 6000 1255 

38 0.4 3230 10 3550 10000 1255 

39 0.6 200 5.5 3400 6000 1255 

40 0.6 1715 10 3550 6000 2435 

41 0.4 3230 1 3550 10000 1255 

42 0.4 1715 10 3400 6000 2435 

43 0.4 200 1 3550 2000 1255 

44 0.4 3230 5.5 3550 10000 2435 

45 0.6 200 5.5 3700 6000 1255 

46 0.4 3230 5.5 3550 2000 75 

47 0.4 1715 1 3700 6000 75 

48 0.6 1715 10 3550 6000 75 

 

3.3. Running Reservoir Simulations 

Each dataset presented in Table 3 was entered into the base 

reservoir model data file and a simulation conducted with 

Eclipse 100 reservoir simulator to determine the time and 

recovery factor at water breakthrough. The input and output 

data were entered into design expert 12 for further analysis. 

3.4. Analysis of Variance (ANOVA) 

Various regression models were evaluated and analyzed 

using analysis of variance (ANOVA) to ascertain the model 

which best fits input and output data. Various transformation 

functions are available in design expert, and each 

transformation function was evaluated as follows 

a. The recommended transformation function should yield 

the highest value of the coefficient of determination �� 

value. 

b. The transformation function which yields the lowest 

difference between Adjusted �� and Predicted �� which 

should be less than 0.2 is recommended. 

c. The transformation function which yields the highest 

value of Adequacy in Precision (Adeq Precision) is 

recommended. Adeq Precision measures the signal-to-

noise ratio, a value greater than 4 is desirable, and the 

greater the value indicates that the model can be used to 

navigate the design space. 

d. Comparing the standard deviation obtained from 

different transformation functions. The transformation 

function which yields the least value of standard 

deviation is recommended. 

The recommended transformation function for a set of 

input and output data can also be determined using the Box-

Cox plot for power-law transformations. After the 

transformation function has been selected based on the stated 

criteria, an equation or proxy model for predicting the time 

and recovery factor at water breakthrough was developed 

from the recommended transformation function. The model 

was validated to determine the performance of the model 

within the experimental design space. 
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3.5. Model Validation 

The developed proxy models were validated by comparing 

simulated and predicted results for each input dataset to see if 

they agree with each other. Also, a valid model should have a 

relatively high value of the coefficient of determination given 

by equation 3. Evaluation of the performance and validity of 

the models were also determined using the average absolute 

percentage error (AAPE) and root mean squared error 

(RMSE) which are given by equations 4 and 5 respectively. 

�� � 1 � ∑  � !"#$  %&'()*+",-
∑ � %&'($  !.#///////)*+",-

                     (3) 

���0 � �
1  ∑ 2345 !"#$  %&'(

 !"# 6�781�9� 	 100%         (4) 

�<=0 �  3∑ � !"#$  %&'()*>",-
?                     (5) 

3.6. Optimization of Proxy Model 

Optimization algorithms have been used by different 

researchers in science and engineering to optimize 

engineering and industrial systems. Optimization can be 

single or multi-objective depending on the number of 

objective functions being considered. Single objective 

optimization involves the determination of an optimum 

solution of a model with a single objective function. Multi-

objective optimization involves determining more than one 

optimal solution of more than one model with more than one 

objective function. In multi-objective optimization, different 

solutions might not satisfy the objective functions and this 

causes different solutions to produce tradeoffs between the 

different objectives. A set of solutions represented in a Pareto 

front will be generated. 

In this study, the developed proxy models were coded in 

MATLAB and using the Global Optimization toolbox in 

MATLAB which contains the multi-objective genetic 

algorithm (MOGA), the sets of parameters that will 

maximize the objective functions were determined. 

The general formulation of a multi-objective optimization 

problem is as follows 

@ABA@ACD @EFA@ACD⁄  H?
F
, B � 1, 2, 3, … … … … . , B 

Subject to JK L �
1
  L  MK 

JK L �
1
  L  MK 

JK L �
3
  L  MK 

JK L �
B
  L  MK 

Where H?
F
  are n number of objective functions with 

respect to X(1), X(2), X(3),……, X(n) 

LB is the lower bound of variables and UB is the upper 

bound of variables 

4. Results and Discussion 

Figures 2 and 3 show respectively a variation of Field Oil 

Efficiency and Field Water Production Rate with time for 48 

simulation runs conducted using the input datasets presented in 

Table 3. The water breakthrough time, TOP and recovery factor 

at breakthrough, �QRS  were obtained from simulation results at 

the onset of water production and are presented in Table 4. 

 

Figure 2. Field Oil Efficiency versus Time for different simulation runs. 
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Figure 3. Field Water Production Rate versus Time for different simulation runs. 

Table 4. Time and Recovery Factor at water breakthrough for 48 input dataset. 

Run 
Porosity 

% 

Horizontal 

Permeability, md 

Water 

viscosity cp 

Bottom hole 

pressure, psi 

Injection rate, 

STB/day 

Vertical 

Permeability md 
TUV, Years 

FOE, 

fraction 

1 0.4 3230 5.5 3550 2000 2435 17.245 0.605 

2 0.6 1715 1 3550 6000 75 6.847 0.48035 

3 0.4 1715 10 3700 6000 2435 7.456 0.7679 

4 0.4 200 5.5 3550 2000 75 22.17 0.76062 

5 0.6 1715 1 3550 6000 2435 6.026 0.42285 

6 0.4 1715 10 3400 6000 75 7.391 0.7714 

7 0.6 1715 5.5 3700 2000 1255 29.29 0.67929 

8 0.2 200 5.5 3700 6000 1255 3.778 0.74711 

9 0.2 1715 10 3550 6000 2435 3.694 0.76755 

10 0.2 3230 5.5 3400 6000 1255 3.286 0.69501 

11 0.2 1715 1 3550 6000 75 2.19 0.4604 

12 0.4 1715 10 3700 6000 75 7.392 0.76381 

13 0.2 1715 5.5 3700 2000 1255 9.72 0.67634 

14 0.4 3230 1 3550 2000 1255 9.029 0.31936 

15 0.6 1715 5.5 3700 10000 1255 6.437 0.73959 

16 0.2 1715 1 3550 6000 2435 1.917 0.40447 

17 0.4 200 10 3550 10000 1255 5.009 0.76607 

18 0.4 200 10 3550 2000 1255 23.08 0.77929 

19 0.2 1715 10 3550 6000 75 3.699 0.76944 

20 0.6 1715 5.5 3400 10000 1255 6.432 0.74762 

21 0.4 1715 1 3700 6000 2435 4.106 0.42779 

22 0.4 200 5.5 3550 2000 2435 22.17 0.76084 

23 0.4 3230 5.5 3550 10000 75 4.212 0.73438 

24 0.2 1715 5.5 3400 10000 1255 2.097 0.73166 

25 0.4 1715 1 3400 6000 2435 4.102 0.43631 

26 0.2 1715 5.5 3400 2000 1255 9.717 0.68488 

27 0.4 200 5.5 3550 10000 2435 4.575 0.73638 

28 0.6 1715 5.5 3400 2000 1255 29.292 0.68801 

29 0.6 3230 5.5 3400 6000 1255 10.131 0.7127 
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Run 
Porosity 

% 

Horizontal 

Permeability, md 

Water 

viscosity cp 

Bottom hole 

pressure, psi 

Injection rate, 

STB/day 

Vertical 

Permeability md 
TUV, Years 

FOE, 

fraction 

30 0.4 3230 10 3550 2000 1255 20.698 0.72469 

31 0.2 3230 5.5 3700 6000 1255 3.373 0.70324 

32 0.4 1715 1 3400 6000 75 4.38 0.46619 

33 0.4 200 1 3550 10000 1255 2.873 0.47574 

34 0.2 1715 5.5 3700 10000 1255 2.151 0.74074 

35 0.4 200 5.5 3550 10000 75 4.654 0.745 

36 0.2 200 5.5 3400 6000 1255 3.742 0.74868 

37 0.6 3230 5.5 3700 6000 1255 10.267 0.71359 

38 0.4 3230 10 3550 10000 1255 4.441 0.76981 

39 0.6 200 5.5 3400 6000 1255 11.361 0.75635 

40 0.6 1715 10 3550 6000 2435 11.223 0.77613 

41 0.4 3230 1 3550 10000 1255 2.329 0.40927 

42 0.4 1715 10 3400 6000 2435 7.452 0.77741 

43 0.4 200 1 3550 2000 1255 13.96 0.48528 

44 0.4 3230 5.5 3550 10000 2435 4.207 0.7333 

45 0.6 200 5.5 3700 6000 1255 11.363 0.74896 

46 0.4 3230 5.5 3550 2000 75 18.338 0.64302 

47 0.4 1715 1 3700 6000 75 4.382 0.45625 

48 0.6 1715 10 3550 6000 75 11.089 0.76804 

 

The 48 input datasets with their corresponding water 

breakthrough times, TOP and recovery factors at 

breakthrough, �QRS  obtained from simulation and 

presented in Table 4 were entered into the Design Expert 

Software for further analysis and generation of the proxy 

model. 

Table 5. Comparison between different transformation functions for Water Breakthrough Time. 

Transformation Function WX  Adjusted  WX Predicted WX Difference Adeq Precision Standard Deviation 

None 0.9701 0.9609 0.9407 0.0202 39.4952 1.41 

Square Root 0.9914 0.9881 0.9801 0.0080 63.7149 0.1179 

Natural Log 0.9987 0.9982 0.9969 0.0013 165.5765 0.0315 

Base 10 Log 0.9987 0.9982 0.9969 0.0013 165.5765 0.0137 

Inverse Square Root 0.9940 0.9915 0.9859 0.0056 68.5338 0.0133 

Inverse 0.9764 0.9691 0.9538 0.0153 41.3408 0.0224 

Power 0.9701 0.9609 0.9407 0.0202 39.4952 1.41 

Table 6. Comparison between different transformation functions for Recovery Factor at Breakthrough. 

Transformation Function WX  Adjusted WX Predicted WX Difference Adeq Precision Standard Deviation 

None 0.9946 0.9929 0.9891 0.0038 82.0438 0.0115 

Square Root 0.9940 0.9920 0.9840 0.0080 74.9254 0.0081 

Natural Log 0.9909 0.9878 0.9728 0.015 61.7610 0.0266 

Base 10 Log 0.9919 0.9818 0.9574 0.0244 35.1110 0.0141 

Inverse Square Root 0.9849 0.9797 0.9516 0.0281 48.8361 0.0232 

Inverse 0.9752 0.9667 0.9178 0.0489 38.9646 0.0812 

Power 0.9946 0.9929 0.9891 0.0038 82.0438 0.0115 

 

4.1. Selection of Transformation Function 

Different transformation functions with a modified 

quadratic regression model were evaluated to determine that 

which gives the highest  ��  value, the lowest difference 

between Adjusted �� and Predicted ��, the highest value of 

Adeq Precision and the lowest standard deviation. Tables 5 

and 6 show a comparison of different transformation 

functions for time and recovery factor at water breakthrough 

respectively. 

Results from Table 5 shows that “Natural Log” and “JYZ�[” 

transformation functions both met the stated criteria in 

comparison with others while results from Table 6 shows that 

the “none” and “Power” transformation functions met the 

stated criteria. However, the “JYZ�[ ” resulted in a lower 

standard deviation for \RS  and was selected. For Recovery 

Factor at water breakthrough, the “none” transformation 

function was selected as both “None” and “Power” 

transformation functions resulted in the same standard 

deviation for the modified quadratic model. 

The Box-Cox Plot for Power-law transformations was 

generated for each of water breakthrough time and recovery 

factor at breakthrough as shown in Figures 4 and 5 

respectively. These plots gave recommendations of the best 

transformation function for each response using the modified 

quadratic model. 
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Figure 4. Water Breakthrough Time Box-Cox Plot for Power Transformations. 

 

Figure 5. Recovery Factor Box-Cox Plot for Power Transformations. 

From Figures 4 and 5, the recommended transformation 

functions were JYZ�[ and None for \RS  and RF respectively 

which are in agreement with recommendations from Tables 5 

and 6. It can be inferred here that the recommended 

transformation functions were accurate. Using the 

recommended transformation functions, proxy models for \RS 

and RF were developed using the modified quadratic 

regression model. The proxy models for \RS  and �QRS  are 

given by equations 6 and 7 respectively. 

JYZ�[
\RS
 �  0.613282 �  2.59821 	  �1 �  �5.43121D � 05 	  �2 �  0.0766922 	  �3 �  9.38107D � 06 	  �4 � �0.000170686 	  �5 � �1.85851D � 05 	  �6 �  3.31563D � 06 	  �2 	  �3 �  2.113D � 09 	  �2 	  �5 � 2.14181D � 06 	  �3 	  �6 � �1.73581 	  �1� � �0.00515332 	  �3� �  7.09961D � 09 	  �5�          (6) 

�QRS �  0.45516 �  0.0216583 	  �1 �  �6.46865D � 05 	  �2 �  0.0940642 	  �3 �  �1.43361D � 05 	  �4 � 9.82496D � 06 	  �5 � �1.9342D � 05 	  �6 �  3.32838D � 06 	  �2 	  �3 �  4.30621D � 09 	  �2 	  �5 � 2.21363D � 06 	  �3 	  �6 � �0.00599173 	  �3� �  �9.80234D � 10 	  �5�                        (7) 
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4.2. Model Validation 

The sets of input data in Table 4 were used in calculating \RS 

and �QRS using the developed proxy models shown in equations 

6 and 7 respectively. The average absolute percentage error and 

root mean squared error between actual and predicted \RS  and �QRS were calculated using equations 4 and 5 respectively. Table 

7 shows the simulated, predicted, and percentage error values of 

each data point for \RS and �QRS respectively. 

Table 7. Comparison of Actual and Predicted values of time and recovery factor at water breakthrough. 

Run 
X1 

% 

X2 

Md 

X3 

cp 

X4 

psi 

X5 

STB/day 

X6 

md 

Simulated TUV Years 

Predicted TUV, Years 

Percentage 

Error for TUV, % 

Simulated RF, 

fraction 

Predicted FOE, 

fraction 

Percentage 

Error for 

RF, % 

1 0.4 3230 5.5 3550 2000 2435 17.245 17.44369 1.152156 0.605 0.62532 3.358691 

2 0.6 1715 1 3550 6000 75 6.847 6.556599 4.24129 0.48035 0.466793 2.822374 

3 0.4 1715 10 3700 6000 2435 7.456 7.673001 2.910419 0.7679 0.773169 0.686219 

4 0.4 200 5.5 3550 2000 75 22.17 22.60499 1.962084 0.76062 0.756671 0.519143 

5 0.6 1715 1 3550 6000 2435 6.026 5.996149 0.495362 0.42285 0.42637 0.832393 

6 0.4 1715 10 3400 6000 75 7.391 7.506976 1.569156 0.7714 0.770876 0.06796 

7 0.6 1715 5.5 3700 2000 1255 29.29 29.63525 1.178715 0.67929 0.693177 2.04433 

8 0.2 200 5.5 3700 6000 1255 3.778 3.822703 1.183256 0.74711 0.753109 0.803019 

9 0.2 1715 10 3550 6000 2435 3.694 3.734335 1.091908 0.76755 0.770988 0.447949 

10 0.2 3230 5.5 3400 6000 1255 3.286 3.225967 1.826929 0.69501 0.695165 0.022233 

11 0.2 1715 1 3550 6000 75 2.19 2.152057 1.732547 0.4604 0.458129 0.493178 

12 0.4 1715 10 3700 6000 75 7.392 7.555781 2.215653 0.76381 0.766575 0.361992 

13 0.2 1715 5.5 3700 2000 1255 9.72 9.727108 0.073126 0.67634 0.684514 1.208506 

14 0.4 3230 1 3550 2000 1255 9.029 9.885521 9.486335 0.31936 0.324867 1.724356 

15 0.6 1715 5.5 3700 10000 1255 6.437 6.559541 1.903697 0.73959 0.736755 0.383274 

16 0.2 1715 1 3550 6000 2435 1.917 1.968102 2.665739 0.40447 0.417706 3.272543 

17 0.4 200 10 3550 10000 1255 5.009 4.638531 7.396069 0.76607 0.760464 0.731775 

18 0.4 200 10 3550 2000 1255 23.08 22.22926 3.686029 0.77929 0.769077 1.31056 

19 0.2 1715 10 3550 6000 75 3.699 3.677286 0.587024 0.76944 0.764394 0.655843 

20 0.6 1715 5.5 3400 10000 1255 6.432 6.517171 1.324179 0.74762 0.741056 0.877962 

21 0.4 1715 1 3700 6000 2435 4.106 4.043893 1.512601 0.42779 0.419888 1.847238 

22 0.4 200 5.5 3550 2000 2435 22.17 21.78433 1.739593 0.76084 0.739757 2.771005 

23 0.4 3230 5.5 3550 10000 75 4.212 4.249844 0.898475 0.73438 0.738004 0.493473 

24 0.2 1715 5.5 3400 10000 1255 2.097 2.139116 2.008391 0.73166 0.732393 0.100164 

25 0.4 1715 1 3400 6000 2435 4.102 4.017772 2.053339 0.43631 0.424189 2.778178 

26 0.2 1715 5.5 3400 2000 1255 9.717 9.664278 0.542576 0.68488 0.688814 0.574471 

27 0.4 200 5.5 3550 10000 2435 4.575 4.545688 0.640702 0.73638 0.731144 0.711013 

28 0.6 1715 5.5 3400 2000 1255 29.292 29.44382 0.518311 0.68801 0.697478 1.376108 

29 0.6 3230 5.5 3400 6000 1255 10.131 9.828443 2.986445 0.7127 0.703828 1.244866 

30 0.4 3230 10 3550 2000 1255 20.698 19.75276 4.566815 0.72469 0.700022 3.403884 

31 0.2 3230 5.5 3700 6000 1255 3.373 3.24694 3.737327 0.70324 0.690864 1.759898 

32 0.4 1715 1 3400 6000 75 4.38 4.393306 0.30379 0.46619 0.464611 0.338599 

33 0.4 200 1 3550 10000 1255 2.873 2.858706 0.497537 0.47574 0.476074 0.070107 

34 0.2 1715 5.5 3700 10000 1255 2.151 2.153023 0.094045 0.74074 0.728092 1.707478 

35 0.4 200 5.5 3550 10000 75 4.654 4.716934 1.352246 0.745 0.748058 0.410529 

36 0.2 200 5.5 3400 6000 1255 3.742 3.798012 1.496835 0.74868 0.75741 1.166088 

37 0.6 3230 5.5 3700 6000 1255 10.267 9.89234 3.649163 0.71359 0.699527 1.970738 

38 0.4 3230 10 3550 10000 1255 4.441 4.637696 4.429093 0.76981 0.795792 3.375128 

39 0.6 200 5.5 3400 6000 1255 11.361 11.57127 1.850819 0.75635 0.766074 1.285593 

40 0.6 1715 10 3550 6000 2435 11.223 11.37727 1.374593 0.77613 0.779652 0.453732 

41 0.4 3230 1 3550 10000 1255 2.329 2.320994 0.343745 0.40927 0.420637 2.777283 

42 0.4 1715 10 3400 6000 2435 7.452 7.623439 2.300576 0.77741 0.77747 0.007757 

43 0.4 200 1 3550 2000 1255 13.96 13.6998 1.863927 0.48528 0.484686 0.122326 

44 0.4 3230 5.5 3550 10000 2435 4.207 4.095556 2.649023 0.7333 0.72109 1.665108 

45 0.6 200 5.5 3700 6000 1255 11.363 11.6465 2.494934 0.74896 0.761773 1.71074 

46 0.4 3230 5.5 3550 2000 75 18.338 18.10083 1.293326 0.64302 0.642234 0.122192 

47 0.4 1715 1 3700 6000 75 4.382 4.421868 0.909813 0.45625 0.460311 0.890006 

48 0.6 1715 10 3550 6000 75 11.089 11.20346 1.032203 0.76804 0.773057 0.653222 

A plot of simulated and predicted water breakthrough time and recover factor at breakthrough are shown in Figures 6 and 7 

respectively. 
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Figure 6. Simulated versus Predicted Values for Water Breakthrough Time. 

 

Figure 7. Simulated versus Predicted Values for Oil Recovery Factor. 

Results from figures 6 and 7 show that the simulated 

and predicted values for each response are in close 

agreement with each other depicted by coefficients of 

determination ��  of 0.9984 and 0.9946 for time and 

recovery factor at water breakthrough respectively which 

are relatively high. Also, the percentage errors of each 

data point for both cases were found to be less than 10%. 

The average absolute percentage error (AAPE) and root 

mean square error (RMSE) for time and recovery factor at 

water breakthrough were calculated using equations 5 and 

6. The AAPE was found to be 2.038% and 1.217% while 

the RMSE was found to be 0.08 and 0.0000988 for time 

and recovery factor at water breakthrough respectively. 

This indicates that the developed models are accurate and 

reliable. 

The developed proxy models were further validated by 

using input data sets within the design space that were not 

initially used in conducting any of the 48 simulation runs 

presented in Table 3. Six input data sets were used to run a 

simulation and calculate from the developed proxy models, TOP 
and RF and their corresponding percentage errors which are 

presented in Table 8. 
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Table 8. Percentage Error between Simulated and Predicted \RS and RF for variables not used in model development. 

Run 
X1 

% 

X2 

Md 

X3 

cp 

X4 

psi 

X5 

STB/day 

X6 

md 

Simulated 

TUV, Years 

Predicted 

TUV, Years 

Percentage 

Error,% 

Simulated 

FOE, fraction 

Predicted 

FOE, fraction 

Percentage 

Error,% 

1 0.39 298 5.7 3621 2867 2017 15.054 16.35461 7.952577 0.66102 0.7497 11.8398 

2 0.42 3005 8.5 3456 7678 961 6.02 6.140251 1.958412 0.7682 0.7884 2.5726 

3 0.52 1770 6.2 3648 7727 1095 7.249 7.498133 3.322595 0.74566 0.7591 1.7790 

4 0.29 1601 5.2 3661 9144 484 3.37 3.276592 2.850768 0.73446 0.7273 0.9774 

5 0.44 2812 7.3 3519 9254 688 5.199 5.437955 4.394209 0.7609 0.7848 3.0551 

6 0.54 1641 9 3654 8350 1389 7.302 7.52961 3.022866 0.77481 0.7922 2.1989 

 

Results from Table 8 shows that the actual and predicted 

values for TOP and RFOP  were in agreement with each other 

depicted by percentage errors of less than 8% and 12%, and 

root mean square errors of 0.5606 and 0.0396 respectively. 

This shows that the developed models can be used to 

navigate the design space and in predicting TOP and RFOP for 

an oil reservoir. 

4.3. Determination of Optimum Parameters to Maximize 

Time and Recovery Factor at Water Breakthrough 

Using Multi-Objective Genetic Algorithm 

Studies have shown that optimizing the proxy model of a 

reservoir simulation model is computationally inexpensive 

and less time-consuming. Since two proxy models were 

developed in this study, a multi-objective genetic algorithm 

was used in determining the optimum sets of parameters of 

the developed proxy models that will delay water 

breakthrough time and maximize recovery factor at 

breakthrough. 

Solutions of multi-objective genetic algorithms are 

illustrated using Pareto fronts. With the Pareto optimum set, 

the corresponding objective function values in the objective 

space are called the Pareto front. For a reservoir with 

porosity, horizontal and vertical permeability values fixed at 

the 0.2, 200 md, 75 md respectively, the optimization 

results are presented in Table 9 and illustrated by the Pareto 

front presented in Figure 8. The Pareto front shows a plot of 

objective function 1 (time at water breakthrough) versus 

objective function 2 (recovery factor at water breakthrough). 

Results from figure 8 show the best value of the objective 

functions ( \RS  and  �QRS ) are 10.8978 years and 0.786 

respectively. The corresponding optimum parameter values 

of viscosity of injected water (X3), bottom-hole pressure 

(X4), and water injection rate (X5) are 7.5278 cp, 3624.4 psi, 

and 2194.1 STB/day respectively. 

The stated porosity, horizontal and vertical permeability 

values with the optimum parameter values were used to carry 

out a simulation study to check the validity of the 

optimization results. \RS  and �QRS  from simulation were 

found to be 10.27 years and 0.7647 respectively which are in 

agreement with the best objective function values obtained 

from optimization (10.8978 years and 0.786) as they resulted 

in percentage errors of 6.11% and 2.79% respectively. 

Table 9. Multi-Objective Optimization Results at fixed values of porosity (0.2), vertical (200 md) and horizontal (75 md) permeability 

S/N 
TUV 

efghi 

WjUV 

khglVmno 
S/N 

TUV, 

 efghi 

WjUV 

khglVmno 
S/N 

TUV, 

 efghi 

WjUV 

fraction 
S/N 

TUV  

efghi 

WjUV , 

fraction 

1 11.2381 0.7892 21 11.3427 0.78912 41 7.53653 0.79639 61 5.26707 0.80013 

2 5.83497 0.79946 22 7.39181 0.79657 42 5.14451 0.80023 62 5.41244 0.79997 

3 4.97401 0.80043 23 5.76303 0.79952 43 5.52397 0.79988 63 6.70429 0.79797 

4 8.92592 0.79379 24 6.21597 0.79887 44 5.36046 0.80004 64 6.26782 0.79876 

5 10.9858 0.7898 25 6.9818 0.79746 45 8.6246 0.7943 65 6.79282 0.79782 

6 10.7096 0.7904 26 9.01284 0.79364 46 8.53491 0.79456 66 8.09376 0.79533 

7 11.4207 0.78746 27 8.72101 0.79416 47 7.28383 0.7969 67 9.90748 0.7919 

8 10.8517 0.79005 28 7.9726 0.79559 48 5.70659 0.79959 68 9.64578 0.79242 

9 9.37997 0.79293 29 10.8198 0.79016 49 10.467 0.79079 69 10.9858 0.7898 

10 6.41225 0.79849 30 5.22956 0.80021 50 10.5372 0.7907 70 8.35748 0.79485 

11 4.89116 0.80049 31 6.10971 0.79898 51 9.08973 0.79343  
  

12 4.78715 0.80055 32 6.33229 0.79865 52 8.48294 0.79458  
  

13 6.93012 0.7976 33 6.63802 0.79808 53 7.16645 0.79701  
  

14 4.69686 0.80059 34 8.27655 0.79505 54 4.70604 0.80059  
  

15 8.17203 0.79522 35 7.5958 0.79635 55 10.665 0.7904  
  

16 10.3347 0.79099 36 6.51259 0.79836 56 7.70535 0.79614  
  

17 11.1037 0.78949 37 11.1002 0.78968 57 5.92903 0.7992  
  

18 9.50215 0.79251 38 7.85293 0.79586 58 7.35734 0.79681  
  

19 4.87309 0.80051 39 10.1699 0.79138 59 10.2263 0.79126  
  

20 11.1989 0.78946 40 9.74866 0.79199 60 7.90296 0.79579  
  



 International Journal of Oil, Gas and Coal Engineering 2022; 10(1): 17-30 29 

 

 

Figure 8. Pareto Front for Time versus Recovery Factor at Water Breakthrough obtained using Multi-Objective Genetic Algorithm. 

5. Conclusion 

A reservoir simulation proxy model for predicting time and 

recovery factor at water breakthrough using design of 

experiments and response surface methodology was 

developed. Development of the proxy models was based on 

data obtained from simulation and the transformation 

function which meets specific criteria or that recommended 

from the Box-Cox plot of power-law transformations. 

In this study, the proxy models showed the relationship 

between water breakthrough time, TOP and recovery factor at 

breakthrough, �QRS  with porosity, horizontal permeability, 

the viscosity of injected water, bottom-hole pressure of 

producer, water injection rate, and vertical permeability. 

The models were validated by comparing simulated and 

predicted results for the two cases and agreed with each other. 

We also validated the proxy models by setting six sets of 

input variables that were not initially used during model 

development in simulating and predicting water breakthrough 

time and recovery factor at breakthrough. The simulated and 

predicted results were also in good agreement with each 

other since a minimal percentage error was observed for all 

cases. This shows that the developed proxy model can be 

used in navigating the design space and in predicting water 

breakthrough time and recovery factor at breakthrough for a 

reservoir of known porosity horizontal and vertical 

permeability. 

This reservoir simulation proxy model can also be used to 

easily optimize the water injection process as this can aid in 

determining the optimum parameter values that will increase 

water breakthrough time and maximize recovery factor at 

water breakthrough in a reservoir of known average porosity, 

horizontal and vertical permeability. We applied in this study a 

multi-objective genetic algorithm in MATLAB to determine 

optimum parameters required to delay water breakthrough 

time and recovery factor at breakthrough. Optimization results 

were also in agreement with simulations results. Hence, the 

model can be used to predict water breakthrough time and 

recovery factor at breakthrough in a reservoir of known 

porosity, horizontal and vertical permeability. 

6. Further Work 

Further work in this study will consider a reservoir model 

that is multi-layered and highly heterogeneous with more 

wells. It will also consider well placement and well control 

parameters in modeling the time and recovery at water 

breakthrough. 

Nomenclature 

ANOVA Analysis of Variance 

R
2
  Coefficient of Determination 

FOE Field Oil Efficiency 

FWPR Field Water Production Rate \RS  Water Breakthrough Time �QRS  Recovery Factor at breakthrough 

X1 Porosity 

X2 Horizontal Permeability 

X3 Viscosity of injected water 

X4 Bottom-hole pressure of production well 

X5 Water Injection rate 

X6 Vertical Permeability Yqrs  Actual Values Ytuvw  Predicted Values 

n Number of Simulation runs 

AAPE Average Absolute Percentage Error 

RMSE Root Mean Square Error 



30 Anthony Ogbaegbe Chikwe et al.:  Development of Proxy Models for Predicting and Optimizing the Time and  

Recovery Factor at Breakthrough During Water Injection in Oil Reservoirs 

 

References 

[1] Z. Chen, Reservoir simulation mathematical techniques in oil 
recovery, vol. 77. 2007. 

[2] T. Ahmed and D. N. Meehan, Advanced Reservoir 
Management and Engineering. 2012. 

[3] C. R. Smith, G. W. Tracy, and R. L. Farrar, “Oil Reservoir 
Drive Mechanisms,” in Applied Reservoir Engineering, 1992. 

[4] N. Ezekwe, Petroleum ReservoirEngineering Practice. 
Pearson Education, Inc., 2011. 

[5] D. W. P. Green, Enhanced Oil Recovery, Second. Richardson, 
TX: Society of Petroleum Engineers, 2018. 

[6] M. Karami, A. K. Manshad, and S. Ashoori, “The prediction of 
water breakthrough time and critical rate with a new equation 
for an iranian oil field,” Pet. Sci. Technol., vol. 32, no. 2, pp. 
211–216, 2014, doi: 10.1080/10916466.2011.586960. 

[7] X. Guo, P. Du, P. Wang, H. Dang, T. Gao, and G. Song, “A 
prediction model for water breakthrough time in high-sulfur gas 
reservoir with edge water,” J. Pet. Explor. Prod. Technol., vol. 8, 
no. 3, pp. 855–860, 2018, doi: 10.1007/s13202-017-0378-3. 

[8] Q. Huang, X. Lin, Q. Xu, and Y. He, “A New Method for 
Predicting Water Breakthrough Time in the Edge Water 
Condensate Gas Reservoir,” IOP Conf. Ser. Earth Environ. 
Sci., vol. 526, no. 1, 2020, doi: 10.1088/1755-
1315/526/1/012126. 

[9] B. C. Craft and M. F. Hawkins, Applied petroleum reservoir 
engineering. Prentice Hall PTR, Englewood Cliffs, 1991. 

[10] A. A. Jassim, A. A. Al-dabaj, and A. S. AL-Adili, “Water 
Injection for Oil Recovery in Mishrif Formation for Amarah 
Oil Field,” Iraqi J. Chem. Pet. Eng., vol. 21, no. 1, pp. 39–44, 
2020, doi: 10.31699/ijcpe.2020.1.6. 

[11] O. Meshioye, E. Mackay, E. Ekeoma, and M. Chukuwezi, 
“Optimization of waterflooding using smart well technology,” 
Soc. Pet. Eng. - Niger. Annu. Int. Conf. Exhib. 2010, NAICE, 
vol. 1, pp. 429–437, 2010, doi: 10.2118/136996-ms. 

[12] R. D. Latuan, F. Klea, and I. G. O. S. Prajanji, “Waterflooding 
Management: Challenges and Solutions during the Injection 
Process to Obtain Effectively and Environmentally Based Oil 

Recovery in Oil and Gas Industry,” IOP Conf. Ser. Earth 
Environ. Sci., vol. 690, no. 1, 2021, doi: 10.1088/1755-
1315/690/1/012037. 

[13] O. Erivwo, J. Ochai, V. Agbaroji, and O. Oke, “Considerations 
for mitigating early water breakthrough in horizontal wells in 
heavy oil reservoirs in the Niger delta - Ogini field case study,” 
Soc. Pet. Eng. - SPE Niger. Annu. Int. Conf. Exhib. 2019, 
NAIC 2019, 2019, doi: 10.2118/198828-MS. 

[14] P. Ogbeiwi, Y. Aladeitan, and D. Udebhulu, “An approach to 
waterflood optimization: case study of the reservoir X,” J. Pet. 
Explor. Prod. Technol., vol. 8, no. 1, pp. 271–289, 2018, doi: 
10.1007/s13202-017-0368-5. 

[15] L. M. Da Silva, G. D. Avansi, and D. J. Schiozer, 
“Development of proxy models for petroleum reservoir 
simulation: a systematic literature review and state-of-the-art,” 
Int. J. Adv. Eng. Res. Sci., vol. 7, no. 10, pp. 36–62, 2020, doi: 
10.22161/ijaers.710.5. 

[16] A. Yasutra, D. Irawan, and F. O. Sitompul, “a Proxy Model To 
Predict Waterflooding Performance in Channeling Deltaic 
Sand Reservoir,” PETROJurnal Ilm. Tek. Perminyakan, vol. 9, 
no. 1, p. 30, 2020, doi: 10.25105/petro.v9i1.5992. 

[17] M. Olanipekun, A. J. U., and I. S. O., “Development of Proxy 
Models for Screening Water Flood and Gas Flood Candidates,” 
J. Eng. Res. Reports, vol. 20, no. 1, pp. 51–57, 2021, doi: 
10.9734/jerr/2021/v20i117246. 

[18] F. Alenezi and S. Mohaghegh, “A data-driven smart proxy 
model for a comprehensive reservoir simulation,” 2016, doi: 
10.1109/KACSTIT.2016.7756063. 

[19] A. K. Jaber, A.-J. S. N., and A. A. K., “A review of proxy 
modeling applications in numerical reservoir simulation,” 
Arab. J. Geosci., vol. 12, no. 701, 2019. 

[20] A. Daghbandan and S. M. Chalik, “The Prediction of the 
Performance of an Oil Reservoir by Proxy Model,” Int. J. 
Chemoinformatics Chem. Eng., vol. 4, no. 2, pp. 46–58, 2016, 
doi: 10.4018/ijcce.2015070104. 

[21] W. J. Al-Mudhafar and D. N. Rao, “Proxy-Based 
Metamodeling Optimization of the Gas-Assisted Gravity 
Drainage GAGD Process in Heterogeneous Sandstone 
Reservoirs,” SPE West. Reg. Meet. Proc., vol. 2017-April, pp. 
1313–1336, 2017, doi: 10.2118/185701-ms. 

 


